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SUMMARY

We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its
application to high-order finite element discretizations of these equations [1]. The model is general with
respect to the number of materials, dimension, space and time discretization. Knowledge about exact
material interfaces is not required. Material indicator functions are evolved by a closure computation at each
quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method
of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration,
while the full pressure equilibration is achieved by both the closure model and the hydrodynamic motion.
Exchange of internal energy between materials is derived through entropy considerations, that is, every
material produces positive entropy, and the total entropy production is maximized in compression and
minimized in expansion. Results are presented for standard one-dimensional two-material problems,
followed by two- and three-dimensional multi-material high-velocity impact arbitrary Lagrangian-Eulerian
(ALE) calculations. Copyright c© 0000 John Wiley & Sons, Ltd.
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namics; finite element methods; high-order methods

1. INTRODUCTION

We are interested in simulating multi-material high-speed flows and shock propagation by solving
numerically the Euler equations of compressible hydrodynamics. We are working with Lagrangian
methods, where the computational mesh moves with the fluid velocity and we have only a single
velocity field to describe the motion of multiple materials. This approach inevitably leads to mesh
deterioration, motivating the use of Arbitrary Lagrangian-Eulerian (ALE) methods [3], where the
flow field is projected on a better mesh. This produces cells containing multiple materials, meaning
that Lagrangian methods must have a mechanism for dealing with such.
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2 V. A. DOBREV ET AL.

One straightforward approach to define Lagrangian evolution of materials in mixed cells is to say
that all materials compress and expand by the same amount, meaning that the volume fractions of
all materials stay the same. Stated another way, the volumetric strain of the single velocity field at
any point in space is equally partitioned among the multiple materials which may occupy that point
in space. This approach can lead to unphysical pressures, as shown for example in [4]. Introducing
new variables that control the evolution of volume fractions, however, makes the system under-
determined. The goal of a closure model is to close the Lagrangian system by defining evolution of
volume fractions, in a physically reasonable way.

There exist two major closure model approaches. The first one treats a mixed cell as a whole,
without reconstructing a sub-cell material interface. A mechanism for equilibration of some quantity
is then introduced, usually pressure as in [5], Sections 4.2 and 4.5. Using this equilibration
assumption, together with imposition of total volume and energy conservation, methods of this
type derive a determined system of equations for the unknown variables in each mixed cell. Another
established option is p+ q equilibration, where q represents the amount of artificial viscosity in
the momentum force, as in the Tipton’s method [2]. Descriptions of this method can also be found
in [6], Section 3.1, and in [7], Section 7. Other existing options are equal pressure increments as in
[8, 4], equal velocity increment as in [5], Section 4.4, equal pressure and equal heat changes (isobar-
isoδQ model) as in [9], which has the important property to be entropy-consistent for all materials
on fully-discrete level.

The second approach to closure models makes use of material interface reconstruction within
mixed cells. Most methods in this category employ of acoustic Riemann solvers in order to
predict quantities like interface velocity, material volume changes and pressure. The most recent
example is [10], where the authors use that interface information to define pair-wise interactions
between materials sharing a common interface. A system of constraints is derived by imposing
positivity of volume, positivity of internal energy, and pressure relaxation. This system is solved
by an optimization procedure. Other approaches making use of material interfaces can be found in
Sections 3.2 and 3.3 in [6], [11], Section 4.6 in [5]. Alternative way to perform a closure computation
is presented in [12], where a single-material method is used to evolve total momentum, volume and
energy, followed by an intermediate step which distributes those quantities among all materials, then
adjusts them by a closure computation, and finally reconstructs the total quantities.

The method developed in this manuscript is motivated by the need for a closure model applicable
to high-order finite element discretizations [1], [13]. Because we are not aware of existing methods
for reconstructing curvilinear material interfaces for such discretizations, we restrict our closure
models to the first of the aforementioned approaches. While there are important differences, e.g. see
Section 5, our approach can be viewed as a high-order variational generalization of the method
of Tipton [2]. Many of the already existing methods were tested, and while the results were
generally acceptable for our low-order discretizations, we could not obtain satisfactory results with
higher degree polynomials. Existing closure models are exclusively designed for staggered-grid
hydrodynamics (SGH) discretizations. In SGH, a mixed cell evolves a single volume fraction value
for each material. In our case, however, a mixed cell must evolve each material’s volume fraction
at a set of quadrature points. This leads to different accelerations at the different quadrature points,
resulting in waves traveling across the mixed cell. Compared to the classic SGH case, closure models
for high-order methods require extra robustness.
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CLOSURE MODEL FOR HIGH-ORDER FINITE ELEMENT LAGRANGIAN HYDRODYNAMICS 3

This paper presents a new closure model that is compatible with high-order finite element
discretizations. The model is defined on continuous level, which makes it independent of dimension,
space and time discretization. The method achieves sub-cell resolution without any knowledge
of explicit material interfaces. Volume fractions are represented as general functions (material
indicator functions), and evolved at each integration point by a partial non-instantaneous pressure
equilibration procedure. The full pressure equilibration is achieved by the combined action of the
closure model and hydrodynamic motion. Each material-specific internal energy equation uses its
own material’s pressure, and an energy exchange term is introduced to account for the volume
fraction changes. This internal energy exchange is determined so that every material produces
positive entropy, and the total entropy production is maximized in compression and minimized
in expansion. The model itself introduces two extra parameters, that is, rate of equilibration and
maximum indicator change within a time step. We present computational tests for standard one-,
two- and three-dimensional problems, resulting from the implementation of the proposed closure
model in the framework of [1].

The remainder of this manuscript has the following organization. In Section 2 we review the
underlying high-order finite element framework. Volume fractions are represented as continuous
functions and the resulting continuous multi-material Lagrangian system is derived in Section 3.
The discrete representation of multi-material quantities is presented in Section 4. In Section 5 we
present the details of the closure model. Finally, in Section 6 we present numerical results on a set
of 1D, 2D and 3D benchmark problems.

2. PRELIMINARIES

This work builds on top of an existing single-material Lagrangian method. In this section we briefly
go over the underlying finite element framework; the complete description can be found in [1].

Let Ω̂ be the initial domain. Material velocity v and mesh position x are discretized in the
finite element space V ⊂ [H1(Ω̂)]d, with basis {wi}. Specific internal energy e is discretized in
E ⊂ L2(Ω̂), with basis {φj}. Throughout this manuscript we refer to the pairs of spaces QkQk−1,
by which we denote V = (Qk)d, i.e., the Cartesian product of the space of continuous finite
elements on quadrilateral or hexahedral meshes of degree k, and E = Q̂k, the companion space of
discontinuous finite elements of order one less than the kinematic space. The density ρ is computed
point-wise from the transformation to the initial positions, namely, for a point x(x̂, t) we compute
ρ(x) = ρ0(x̂)/|J(x̂, t)|. Our semi-discrete formulation uses the mass matrices MV,ME, and the
force matrix F , which are defined as

(MV)ij =

∫
Ω(t)

ρwjwi , (ME)ij =

∫
Ω(t)

ρφjφi , F ij =

∫
Ω(t)

(σ : ∇wi)φj . (1)

Here σ = −pI + σa is a general stress tensor that includes artificial viscosity stresses; for the
particular expression and viscosity coefficients we refer to [1], Section 6. The resulting semi-discrete
form is

MV

dv

dt
= −F · 1 , ME

de

dt
= F T · v , dx

dt
= v . (2)
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4 V. A. DOBREV ET AL.

In this work we also refer to the point-wise, direction-dependent length scale h that is explained in
detail in [1], Section 6.3. The semi-discrete system (2) is discretized in time by standard explicit
high-order time integration techniques, e.g., explicit Runge-Kutta methods.

3. CONTINUOUS MULTI-MATERIAL LAGRANGIAN SYSTEM

In this section we define the representation of different materials and derive the governing equations
for their evolution on continuous level. All referred quantities depend on time, but for ease of
notation we skip the time parameter t. Consider some domain Ω with volume V . It contains multiple
materials with volumes Vk, where k = 1 . . . N is the material index, s.t.

∑
k Vk = V . The material

indicator functions ηk(x) are defined by the requirement that

Vk(U) =

∫
U

ηk(x) (3)

for any subdomain U ⊂ Ω, where Vk(U) is the volume of the kth material contained in U , i.e.
{ηk} are the densities corresponding to material volumes. Let V (U) = |U | be the volume of the
subdomain U , then the pointwise volume fraction at a fixed point x ∈ Ω, can be defined as

Vk(x)

V (x)
:= lim

ε→0

Vk(Bε)

V (Bε)
, (4)

where Bε is a ball of radius ε around x. By the definition and the continuity of ηk(x), it follows that
these functions can also be viewed as the point-wise volume fractions:

ηk(x) = lim
ε→0

∫
Bε
ηk

|Bε|
=
Vk(x)

V (x)
. (5)

Using the same limiting approach and the Reynolds transport theorem, we can derive the standard
equation for the rate of change of V , namely,

1

V (x)

dV (x)

dt
= lim
ε→0

1

|Bε|
d

dt

∫
Bε

1 = lim
ε→0

1

|Bε|

∫
Bε

∇ · v = (∇ · v)(x) ,

leading to the point-wise equation
1

V

dV

dt
= ∇ · v . (6)

This and (5) can be combined to obtain

1

V

dVk
dt

=
dηk
dt

+ ηk∇ · v . (7)

In general, each material should move with its own velocity. However, in the single fluid framework
considered in this paper, only one common velocity is used for all materials. To approximately
represent the divergence of the unknown velocity of each material, we introduce the quantity

dk :=
1

Vk

dVk
dt

. (8)
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CLOSURE MODEL FOR HIGH-ORDER FINITE ELEMENT LAGRANGIAN HYDRODYNAMICS 5

At points where ∇ · v 6= 0, this quantity is related to the commonly used relative material volume
change (or volumetric strain) βk := dVk(x)

dV (x) , see e.g. [4], through the equation

βk∇ · v = ηkdk . (9)

Combining (8) with (7) results in the evolution equation for ηk:

dηk
dt

= ηk(dk −∇ · v) =: αk . (10)

By the definitions of ηk and αk,

∑
k

ηk = 1 and
∑
k

αk =
∑
k

dηk
dt

= 0 .

The quantity αk is of central importance in closure models, since it controls the rate of volume
redistribution between materials. Different choices of αk correspond to different closure models, but
every choice of αk must satisfy

∑
k αk = 0. The special case of αk = 0, or equivalently dk = ∇ · v,

corresponds to ηk being Lagrangian, i.e., each mixed region would keep its material indicator
functions constant. There is no equation for αk; formulas for it are derived by imposing physical
considerations, e.g., pressure equilibration between materials, see Section 5.

Next we turn our attention to the material-specific density and internal energy. In the above spirit
we define material density ρk(x) and specific internal energy ek(x) through the material mass Mk

and material internal energy IEk in subdomains U ⊆ Ω, namely,

Mk(U) =

∫
U

ηkρk , IEk(U) =

∫
U

ηkρkek .

Taking limits, as in (5), leads to the point-wise expressions

ηk(x)ρk(x) =
Mk(x)

V (x)
, ηk(x)ρk(x)ek(x) =

IEk(x)

V (x)
. (11)

The total density ρ and internal specific energy e are defined analogously, based on the total mass
M and the total internal energy IE. Using the facts that M =

∑
kMk and IE =

∑
k IEk together

with (11), we have
ρ =

∑
k

ηkρk , ρ e =
∑
k

ηkρkek . (12)

The Lagrangian frame property that no mass travels through the mesh, i.e. dMk(x)/dt = 0,
combined with (11) and (6), gives the evolution equation for material mass, namely,

d(ηkρk)

dt
= −ηkρk∇ · v. (13)

Note that due to (10), this is equivalent with

dρk
dt

= −ρkdk , (14)
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6 V. A. DOBREV ET AL.

which looks exactly as the standard mass conservation equation in the single-material case with ρ
replaced by ρk and ∇ · v replaced by dk.

As for the material-dependent specific internal energy equations, it is natural to start with

dIEk(x)

dt
= −pk

dVk
dt

.

The left-hand side is expressed by (11), and the right-hand side by (7) and (10), resulting in

ηkρk
dek
dt

= −ηkpkdk . (15)

To get total energy conservation in the single-fluid formulation, the right-hand sides in (15) need to
sum to p∇ · v, where p is the total pressure (still to be defined) used in the momentum equation:∑

k

ηkpkdk = p∇ · v .

Since
ηkpkdk = ηkpk∇ · v + ηkpk(dk −∇ · v) = ηkpk∇ · v + pkαk ,

and since
∑

k αk = 0, one natural way to obtain total energy conservation is to define the total
pressure as p =

∑
k ηkpk and to replace pk in the second (perturbation) term above with a pressure

p̄ that is common for all materials, see Section 5:

ηkρk
dek
dt

= −ηkpk∇ · v − p̄αk . (16)

Equation 16 reduces to (15) when p̄ = pk, i.e., when pressures are in equilibrium or there is only
one material at the point, in which case αk = 0. Since the second term on the right-hand side of (16)
sums to zero over materials, it can be viewed as redistribution of internal energy due to interaction
between materials.

The final multi-material Lagrangian system becomes

dηk
dt

= αk , (17)

d(ηkρk)

dt
= −ηkρk∇ · v , (18)

ρ
dv

dt
= ∇ ·

∑
k

ηkσk , (19)

ηkρk
dek
dt

= ηkσk : ∇v − p̄αk , (20)

with σk = −pkI + σa,k, where σa,k is the artificial viscosity stress tensor. It is the closure model’s
task to define the extra N + 1 variables {αk} and p̄.

Remark 1
Note that we use the so-called ”gathering approach”, i.e., artificial viscosity is computed for each
material and used in the corresponding internal energy equation with ηk scaling. All material
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CLOSURE MODEL FOR HIGH-ORDER FINITE ELEMENT LAGRANGIAN HYDRODYNAMICS 7

viscosities sum to form the total momentum viscosity. Alternative to this is the ”distribution
approach”, see Section 3.2 in [10].

4. DISCRETIZATION DETAILS

In discretizing the system (17)–(20) we mostly follow the existing single material approach, namely,
in space we use high-order finite elements for x, v, {ek}, and in time we apply a generic high-
order explicit time integration. The material-specific masses ηkρk are evolved in a discrete set
of points using the transformation to the initial positions, i.e., for a point x = x(x̂, t) we have
ηk(x, t)ρk(x, t) = ηk0(x̂)ρk0(x̂)/|J(x̂, t)|.

The newly introduced variables ηk are also evolved point-wise, based on (17). The points of
interest are the ones at which the values of {ηk}, {αk} and p̄ are needed, namely, the quadrature
points used to evaluate the integrals on the right-hand sides of (19) and (20). Originally, we
considered the use of a finite element representation of ηk; however some numerical experiments
suggested that the transition between finite element degrees of freedom and quadrature points
(through L2 projection) introduced undesirable pressure oscillations in the closure computation.

Initialization in mixed cells Since the proposed method does not require interface knowledge,
at each point within a mixed cell we require ηk > 0 (to prevent infinite density),

∑
k ηk = 1, well-

defined ρk and ek throughout the cell, and correct material pressures pk.
The initialization of ηk is carried out in two steps. First, the initial jump of each ηk is approximated

by a finite element function in the positive Bernstein basis:

ηk(x, t = 0) =

1 if material k is present at x

0 otherwise
(21)

Second, these finite element functions are interpolated at the quadrature points of interest, by which
the initial indicator values are obtained. The utilization of the positive Bernstein basis results in a
smooth transition between 0 and 1 within the mixed cell. Note that this procedure might introduce
an initial volume error for more complicated interfaces that are not aligned with the finite element
degrees of freedom within the cell.

The material specific densities and internal energies are initialized according to

ρk(x, t = 0) =

ρ(x, 0)|k ηk(x, 0) > 0 ,

0 ηk(x, 0) = 0 ,
ek(x, t = 0) =

e(x, 0)|k ηk(x, 0) > 0 ,

0 ηk(x, 0) = 0 .
(22)

Here ρ|k and e|k provide additional values for material k in mixed cells, at points where the
material’s values are not defined by the initial conditions, i.e., ρ|k and e|k extend the initial
conditions for material k wherever ηk(x, 0) > 0. The aim of these extensions is to define the
material-dependent quantities throughout the whole cell and obtain pressures that agree with the
initial conditions.
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8 V. A. DOBREV ET AL.

Example of initialization between two materials in 1D is shown in Figure 1. Presented is a mixed
cell in [0.5, 0.55] with an interface at x = 0.525. The initial condition is ρL = 0.8, ρR = 0.2, pL =

2.0, pR = 0.1. The chosen finite element spaces (Q4Q3 pair) result in 8 quadrature points of interest.
Note that this initialization results in correct initial material pressures and smooth total pressure.

Figure 1. Initialization of material-specific quantities in 1D. Left panel: Material indicators and densities.
Right panel: Material pressures and total pressure. Solid dots correspond to values at quadrature points of

interest.

Evolution and limiting of ηk The time integration of (17) follows the general high order
algorithm at each point of interest. That is, in a Runge-Kutta time integration sub-stage with a
time step c∆t, we update ηk at each point by

η∗k = ηk + c∆tαk . (23)

Here αk is computed by the closure model, and all other quantities on the right-hand side are explicit.
This is done for mixed points, i.e., integration points in cells that are mixed. Note that we retain the
partition of unity property,

∑
k η
∗
k = 1, since

∑
k αk = 0.

Big sudden changes in material indicators might lead to oscillations in density or energy.
Therefore, the increments αk are limited whenever

|c∆tαk| > cLηk ,

where cL ∈ (0, 1) is the maximum indicator change ratio. In this case we first modify these values
to be

α∗k = sign(αk)
cLηk
c∆t

.

Since
∑

k α
∗
k = 0 does not hold after this change, we apply additional scaling to restore the zero

sum. Specifically, we consider A+ =
∑

α∗
k>0 α

∗
k and A− =

∑
α∗
k<0 α

∗
k, and compute

α′k =


−A

−

A+α
∗
k if α∗k > 0 and A+ +A− > 0 ,

−A+

A−α
∗
k if α∗k < 0 and A+ +A− < 0 ,

α∗k otherwise .
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CLOSURE MODEL FOR HIGH-ORDER FINITE ELEMENT LAGRANGIAN HYDRODYNAMICS 9

These adjusted increments satisfy
∑

k α
′
k = 0 and |c∆tα′k| ≤ cLηk (the latter holds since |α′k| ≤

|α∗k|). Finally, (23) is replaced by
η∗k = ηk + c∆tα′k . (24)

Here η∗k > 0 since cL < 1. Also η∗k < 1 since
∑

k η
∗
k = 1. Furthermore, the evaluation of the right-

hand side of (20) uses α′k instead of the original values αk.

5. CLOSURE MODEL

In this section we describe our method for calculating the quantities {αk} and p̄ at the integration
points used for evaluating the right-hand sides of (17), (20). For ease of notation we suppress most
of the time superscripts.

Definition of αk An estimate for the future pressure is obtained by the equation dpk =

−κkdVk/Vk where κk = ρkC
2
s,k is material k’s bulk modulus, and Cs,k is the sound speed of

material k. Using (8), this can be written as

dpk
dt

= −κkdk . (25)

Then a fully-discrete approximation of the expected pressure at a quadrature point, after a time step
τ , is

p′k = pnk − τκkdk = pnk − τκk∇ · v − τκk
αk
ηk

. (26)

The last term above corresponds to the closure contribution to the pressure update.
Pressure equilibration implies (26) to be independent of k. The closure model we present targets

the equilibration of the first and third terms, i.e., its goal is to have the quantity

p∗ = pnk − τ
κk
ηk
αk (27)

independent of k. The term τκk∇ · v is left to the hydrodynamic motion, namely, ∇ · v → 0 in the
absence of shocks and external forces. The full relaxation of the material pressures results from the
combined action of the closure model and the dynamics of the system.

The N equations (27), together with
∑

k αk = 0, provide a determined system for the N + 1

unknowns {αk} and p∗. Its solution is

p∗ =
∑
k

(
pk
ηk
κk

)
/

(∑
k

ηk
κk

)
, (28)

αk =
1

τ
(pk − p∗)

ηk
κk

. (29)

These quantities are evaluated for mixed cells, at the integration points that are used to compute the
integrals resulting from the Galerkin discretization of (19) and (20). One important consequence
of (29) is that every expanding material (αk > 0) has a higher pressure than every compressing
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10 V. A. DOBREV ET AL.

material (αk < 0). This allows a definition of energy exchange, later in this section, which is
entropy-consistent for every material.

The time scale τ is defined at each integration point by

τ = cτ max
k

(
h

Cs,k

)
, (30)

where cτ is an adjustable constant. A way to define a mixed sound speed, which accounts for
material pressure differences, is presented in [10], Section 4.5, and can also be applied in the
definition of τ . The formula (30), however, implies that τ is bigger than (or at least very close to) the
actual global computational time step ∆t, see [1], Section 7.3. Therefore, the above procedure does
not enforce instantaneous equilibration. Each point computes its equilibrium value and relaxes its
material pressures towards that value. Decreasing cτ leads to faster pressure relaxation, but setting
the value too small makes the method unstable.

Definition of common force There are different options to define the common force in the
momentum equation. We do not define it through p∗, because the equilibration is not instantaneous,
and we must take into account that the material pressures are in general different. The two most
common remaining options are

p =
∑
k

ηkp
n
k , p =

∑
k

ηkp
′
k .

They can be seen as explicit and implicit, respectively. The explicit one is chosen, because it does
not require changing our existing single-material algorithms. It has also proven slightly more stable
in our tests. Total energy conservation is then achieved by writing the internal energy equation as in
(16).

Definition of energy exchange Recall the final form of the material density and specific internal
energy equations:

ηk
dρk
dt

= −ηkρkdk = −ηkρk∇ · v − ρkαk , (31)

ηkρk
dek
dt

= −ηkpk∇ · v − p̄αk + Vk , (32)

where Vk is a positive viscosity term. Next we derive an expression for p̄.
Consider the specific entropy for material k, sk(ρk, ek), defined through the thermodynamic

identity

Tkdsk = dek + pkd

(
1

ρk

)
, (33)

and its derivatives
∂sk
∂ek

=
1

Tk
,

∂sk
∂ρk

= − pk
Tkρ2

k

. (34)

Note that
pk
∂sk
∂ek

+ ρ2
k

∂sk
∂ρk

= 0 . (35)
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CLOSURE MODEL FOR HIGH-ORDER FINITE ELEMENT LAGRANGIAN HYDRODYNAMICS 11

Equation for sk is derived by multiplying (31) by ρk
∂sk
∂ρk

, (32) by ∂sk
∂ek

, and adding the resulting
equations:

ηkρk
dsk
dt

= −∇ · vηk
(
ρ2
k

∂sk
∂ρk

+ pk
∂sk
∂ek

)
− αk

(
ρ2
k

∂sk
∂ρk

+ p̄
∂sk
∂ek

)
+

1

Tk
Vk ⇒ (36)

ηkρk
dsk
dt

=
αk
Tk

(pk − p̄) +
1

Tk
Vk . (37)

To be consistent with the entropy inequality (second law of thermodynamics), the right-hand side
must be positive. The viscosity term is positive by construction. The first term on the right-hand side
accounts for the k-th material’s entropy change due to the closure model. Ideally, we want this term
to be positive for all k. Therefore, p̄ can be bounded as:

max
k−

(pk) ≤ p̄ ≤ min
k+

(pk) , (38)

where k+ are the indices of the expanding materials (αk > 0), and k− are the indices of the
compressing materials (αk < 0). Having p̄ within these bounds, guarantees that the closure model
provides positive entropy production for all materials. Note that the inequality (38) defines a non-
empty interval, because (29) guarantees that all expanding materials have higher pressures than all
compressing materials.

The final value from this interval is determined by trying to reproduce the physical behavior of the
entropy, namely, the fact that entropy production is large in compression, and small in expansion.
Therefore, two cases are considered. In compression, i.e., ∇ · v < 0, p̄ is chosen to maximize the
quantity,

∑
k Tk

dsk
dt . In expansion, i.e., ∇ · v > 0, p̄ is chosen to minimize that quantity. Note that

Tk is included in the sum in order to avoid divisions by Tk, which can cause instabilities for
small energies. Because the total entropy change is a linear function of p̄, its extreme values are
at mink+(pk) and maxk−(pk), namely,

p̄ =


argmax

p∈{maxk−(pk),mink+(pk)}

∑
k

αk
ηkρk

(pk − p) , if ∇ · v ≤ 0 ,

argmin
p∈{maxk−(pk),mink+(pk)}

∑
k

αk
ηkρk

(pk − p) , if ∇ · v > 0 .
(39)

Remark 2
In (37), it is interesting to note that using constant volume fractions, i.e. αk = 0, is in agreement
with the second law.

6. NUMERICAL TESTS

In this section we present results in the context of standard closure model benchmarks existing in
the literature. We begin by considering 1D purely Lagrangian calculations with two materials and
one mixed cell. For these tests, the presentation focuses on the time evolution of {ηk, ρk, ek, pk}
at the mixed quadrature points. Pure cell computations are used as reference solutions. Next, 2D
and 3D high velocity impact ALE simulation are presented. These problems contain three materials
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12 V. A. DOBREV ET AL.

and develop many mixed cells. For the ALE tests, the presentation focuses on the general material
evolution and the robustness of the closure model.

The remesh and multi-material remap phases of the high-order finite element framework [1] will
be presented in a future publication. For the purposes of this presentation, it is sufficient to know
that our remap is advection based and does not involve interface reconstruction. Furthermore, each
material indicator is remapped by projecting its quadrature point values to a finite element function,
remapping this function to the new mesh, and interpolating the result back at the quadrature points
of interest. The remap preserves the starting maximum and minimum values of all fields {ηk, ρk, ek}
and retains

∑
k ηk = 1.

All presented simulations use the parameters cL = 0.05 and cτ = 0.25. Time integration is
performed by the RK2-average method as described in [1], Section 7, where both steps are extended
with the material indicators update (23). All physical units in this section are based on the (cm, g, µs)

unit system, which means velocities are in cm
µs , densities are in g

cm3 and stresses are in Mbar. The
results were generated using the BLAST code [14].

6.1. Incoming Shock

The first result we present is a simple 1D simulation of a shock compressing an equilibrated
interface. This test problem illustrates the deficiencies associated with treating the material indicator
functions as Lagrangian quantities , i.e., αk = 0, and the ability of the closure model to respond to
incoming shocks.

The following setup is used: The domain is x ∈ [0, 100] with two materials. The right boundary is
“wall” while a constant velocity source of v = 1 is applied to the boundary x = 0, i.e., a piston with
constant velocity, which launches a shock from x = 0, compressing each material. Both materials
are initialized with the same pressure p1 = p2 = 0.1. The left side of the domain consists of material
1, a gamma law gas with γ1 = 4.0 and initial density ρ1 = 0.1. The right side of the domain
consists of material 2, a gamma law gas with γ2 = 5/3 and initial density ρ2 = 1.0. Material 1
therefore has a bulk modulus of κ1 = γ1p1 = 0.4 and material 2 initially has a bulk modulus of
κ2 = γ2p2 = 0.16666. Material 1 is less compressible than material 2, i.e. for a given total volume
change associated with a point, we expect material 1 to change its volume less than material 2 does
(i.e., material 1 should expand relative to material 2). The problem is run to a final time of t = 25

and requires artificial viscosity. Presented is a Q1Q0 discretization on 200 cells with an interface
between the two materials at x = 50 for the pure simulation, and x = 50.25 for the mixed cell
simulations.

The final total pressure, density and specific internal energy are shown on Figure 2. The material
interface at final time is around x = 57. Figure 3 shows the time evolution of the mixed cell for the
material specific pressures, densities, specific internal energies, and indicator functions. The plot
compares the pure cells simulation to (1) mixed simulation done with an active closure model and
(2) mixed simulation done with Lagrangian indicators. It is clear in this figure that the closure model
is essential to reproducing the pure results for all fields. The presented model produces the expected
physical behavior and obtains accurate values for all fields.
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Figure 2. Total pressure, density and specific internal energy at t = 25 for the incoming shock test.

Figure 3. Time evolution of the mixed cell for the incoming shock test.

6.2. Two-Material Sod Tube

Next we consider the 1D two-material Riemann problem introduced in [15]. This problem tests the
ability of the method to deal with a pressure discontinuity at initial time. We begin by presenting a
Q1Q0 discretization, and then present a higher-order Q3Q2 discretization with 5 integration points
in the mixed cell.

The domain is x ∈ [0, 1] with v(0) = v(1) = 0 boundary conditions. Both materials are ideal
gases with EOS p = (γ − 1)ρe. The interface is at xi = 0.5 for the pure simulations, and is moved
to xi = 0.5 + 0.5h for the mixed cell simulations. The problem is run to a final time of t = 0.2. The
two initial states are

(v, ρ, e, p, γ) =

(0, 1, 2, 2, 2) if x < xi (Material #1) ,

(0, 0.125, 2, 0.1, 1.4) if x > xi (Material #2) .

To confirm that the current closure model is consistent with the previously presented results
[9, 16, 6, 12, 5, 10], we perform a Q1Q0 simulation on 100 cells. In this case, for the mixed
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14 V. A. DOBREV ET AL.

simulation, closure model is computed at one quadrature point. The final total pressure, density
and specific internal energy from the mixed simulation are shown on Figure 4. Figure 5 shows the
time evolution of the mixed cell for the material specific pressures, indicator functions, densities and
specific internal energies. The plot compares the pure cells simulation to the mixed cell simulation.
All fields behave as expected.

Figure 4. Total pressure, density and specific internal energy at t = 0.2 for the two-material Sod tube test.

Figure 5. Time evolution of the mixed point for the Q1Q0 two-material Sod tube test.

Next aQ3Q2 test is performed on 20 cells. The closure model is evaluated at 5 distinct quadrature
points within the mixed cell. Figure 6 tracks time evolution around the interface for both Q3Q2 pure
and mixed cell simulations. This plot compares (i) the left-most, middle, and right-most quadrature
points of the mixed cell to the (ii) closest to the interface quadrature points of the pure cells. Pressure
equilibration is achieved at every quadrature point with few oscillations. As expected, the left
material pushes away the right material at every quadrature point, until equilibrium is achieved. A
jump in pressure appears for material 2’s left-most point, where the already small material indicator
is additionally compressed. This jump is well distributed between its density and specific internal
energy. This is an important feature for the robustness of the simulation. In particular, there are no
big energy spikes that can affect the simulation time step.
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Figure 6. Time evolution of the mixed points for the Q3Q2 two-material Sod tube test.

6.3. Water-Air Shock Tube

The next test is a more severe 1D Riemann problem. It represents a water-air interaction with big
initial pressure jump. This problem tests the robustness of the high-order closure model.

The domain is x ∈ [0, 1] with v(0) = v(1) = 0 boundary conditions. The left material is modeled
by the stiffened-gas EOS p = (γ − 1)ρe− γA,A = 6× 108. The right material is ideal gases
with EOS p = (γ − 1)ρe. The interface is at xi = 0.7 for the pure simulations, and is moved to
xi = 0.7 + 0.5h for the mixed cell simulations. The problem is run to a final time of t = 2.2× 10−4.
The two initial states are

(v, ρ, p, γ) =

(0, 103, 109, 4.4) if x < xi (Material #1) ,

(0, 50, 105, 1.4) if x > xi (Material #2) .

To confirm that the current closure model is consistent with the previously presented results
[6, 5, 10], we perform aQ1Q0 simulation on 500 cells. In this case, for the mixed simulation, closure
model is evaluated at one quadrature point. The final total pressure, density and specific internal
energy from the mixed simulation are shown on Figure 7. Figure 8 shows the time evolution of
the mixed cell for the material specific pressures, indicator functions, densities and specific internal
energies. The plot compares the pure cells simulation to the mixed cell simulation. All fields behave
as expected.

Next aQ3Q2 test is performed on 100 cells. The closure model is evaluated at 5 distinct quadrature
points within the mixed cell. Figure 9 tracks time evolution around the interface for both Q3Q2 pure
and mixed cell simulations. This plot compares (i) the left-most, middle, and right-most quadrature
points of the mixed cell to the (ii) closest to the interface quadrature points of the pure cells. From
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16 V. A. DOBREV ET AL.

Figure 7. Total pressure, density and specific internal energy at t = 2.2× 10−4 for the water-air shock tube
test.

Figure 8. Time evolution of the mixed point for the Q1Q0 water-air shock tube test.

the zoomed pressure plot one can see that both pure and mixed simulations are more oscillatory
compared to the Q1Q0 case, however equilibration is achieved at all points. The material indicators
behave correctly as the water pushes away the air. Similar to the Sod tube problem, the initial spike
in the left-most point does not cause a big spike in the air’s specific internal energy.

6.4. 2D Gas Impact

This is a simplified high velocity impact problem introduced in [10]. There are three materials
that represent an impactor, a wall and the background. All materials are ideal gases with EOS
p = (γ − 1)ρe, but they have different γ constants and densities. An ALE simulation is required in
order to run to completion. This problem tests the ability of the presented closure model to work in
2D with three materials, and to couple with the ALE phase of our high-order finite element approach.
Performing this simulation with Lagrangian indicators, i.e., ∆ηk = 0, results in non-physical sound
speeds and the computation fails, because the time step becomes too small.

The domain is [0, 2]× [0, 2] with v · n = 0 boundary conditions. The material regions are 0.05 ≤
x ≤ 0.55 and 0.9 ≤ y ≤ 1.1 for the Impactor, 0.8 ≤ x ≤ 0.9 for the Wall, and the rest is Background.
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Figure 9. Time evolution of the mixed points for the Q3Q2 water-air shock tube test.

The problem is run to a final time of t = 10. The three initial states are

(vx, vy, ρ, p, γ) =


(0.2, 0, 20, 2, 50) if x ∈ Impactor ,

(0, 0, 15, 1, 5/3) if x ∈ Wall ,

(0, 0, 1, 1, 1.4) if x ∈ Background .

Presented is a Q2Q1 simulation on 160× 160 cells. Every 20 Lagrange steps are followed by
a remesh/ remap step. The remesh step resets the mesh to its original state. During the Lagrange
steps, the closure model is evaluated at 16 distinct quadrature points within each mixed cell. During
remap, and for visualization, the material indicators are represented as Q2 finite element functions.
Figure 10 shows the total density at different times during the simulation. Zoom of the impactor’s
material indicator function at final time are shown on Figure 11. The indicator functions transition
smoothly and we do not observe material fragmentation, even after substantial deformation. This
robustness can be explained by the fact that both the Lagrangian and remap phases of our high-
order finite element approach are exclusively PDE-based, and interface reconstruction [17, 18] is
not performed at any point of the calculation.

6.5. 3D Steel Ball Impact

As a final example, we consider a full 3D calculation of the high velocity impact of a steel ball
against an aluminum plate. The configuration for this problem is adapted from the 2D test described
in [19]. Here we consider a spherical steel projectile of radius 5.5 and initial velocity in the z-
direction of 0.31cm/µs impacting a cylindrical plate of aluminum with a radius of 24 and a thickness
of 2.5. Both the steel and aluminum materials use a Gruneisen equation of state combined with an
elastic perfectly plastic “strength” model as described in [20]. The steel ball has an initial density
of 7.81, a constant shear modulus of 0.770 Mbar and a constant yield stress of 3.4× 10−4 Mbar
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18 V. A. DOBREV ET AL.

Figure 10. Total density profiles at times 0, 2, 4, 6, 8 and 10 for the 2D gas impact test.

Figure 11. Material indicator function of the impactor at final time for the 2D gas impact test.

while the aluminum plate has an initial density of 2.7, a constant shear modulus of 0.271 Mbar and
a constant yield stress of 4.0× 10−4 Mbar. The steel and aluminum are separated by an air region
which uses an ideal gas equation of state with an initial density of 0.001 and a constant adiabatic
index γ = 1.2.

This problem tests the ability of the presented closure model to work in 3D with three materials
including elastic-plastic material deformation models. In this case, the problem is run using a Q2Q1

method in an Eulerian-like fashion where the computational mesh is evolved purely Lagrangian for
every 20 cycles, followed by a remap to the initial mesh. Figure 12 shows the total density and
computational mesh at different times during the simulation. Figure 13 shows the “material” field
which is computed as the sum of the material indicators weighted by the material number (e.g.
material 1 corresponds to the air, 2 to the steel ball and 3 to the aluminum plate). As before, the
materials transition smoothly and there are no fragments of material breaking free.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



CLOSURE MODEL FOR HIGH-ORDER FINITE ELEMENT LAGRANGIAN HYDRODYNAMICS 19

Figure 12. Total density profiles at times 0, 20, 30, 40, 50 and 60 for the 3D steel ball impact test.

Figure 13. Material indicator functions of the impactor and plate at times 0, 30, and 60 for the 3D steel ball
impact test.

7. CONCLUSION

We have presented a new closure model for multi-material Lagrangian hydrodynamics and its
application to high-order finite element methods. The presented results indicate that the method
deals robustly with sub-cell interactions in any dimension, for different types of materials, and for
different polynomial spaces. The robustness of the method is further validated by the fact that all
tests are performed with fixed parameters cL and cτ .
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